Tháng Bảy 7, 2022

Tìm tập xác định của hàm số mũ và hàm số logarit

I. PHƯƠNG PHÁP

Tập xác định của hàm số $y = f(x)$ là tập các giá trị $x \in R$ sao cho tồn tại $f(x) \in R.$

Hàm số mũ $y = {a^{\varphi (x)}}$ xác định khi:

  •  Nếu $a > 0$ và $\varphi (x)$ xác định.
  • Nếu $a = 0$ thì $\varphi (x) \ne 0.$
  • Nếu $a < 0$ thì $\varphi (x) \in Z.$

Hàm số logarit $y = {\log _a}\varphi (x)$ xác định khi $a > 0$, $a \ne 1$ và $\varphi (x)$ xác định, $\varphi (x) > 0.$
Trong trường hợp có mẫu số thì phải có điều kiện mẫu số xác định và khác $0$, nếu có biểu thức chứa ẩn số trong dấu căn bậc chẵn, biểu thức phải xác định và không âm.

II. VÍ DỤ

Ví dụ 1: Tìm tập xác định của hàm số $y = \sqrt {{{\log }_2}(3x + 4)} .$

Giải

Hàm số xác định khi $\left\{ {\begin{array}{*{20}{l}}
{3x + 4 > 0}\\
{{{\log }_2}(3x + 4) \ge 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{3x + 4 > 0}\\
{3x + 4 \ge 1}
\end{array}} \right.$ $ \Leftrightarrow 3x + 3 \ge 0$ $ \Leftrightarrow x \ge – 1.$

Vậy tập xác định $D = [ – 1, + \infty ).$

Ví dụ 2: Tìm tập xác định của hàm số:

a) $y = \sqrt {16 – {x^2}} {\log _2}\left( {{x^2} – 5x + 6} \right).$

b) $y = \sqrt {{x^2} – 25} + \log \left( {42 + x – {x^2}} \right).$

Giải

a) Hàm số xác định khi $\left\{ {\begin{array}{*{20}{l}}
{16 – {x^2} \ge 0}\\
{{x^2} – 5x + 6 > 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{ – 4 \le x \le 4}\\
{x < 2\:{\rm{hoặc}}\:x > 3}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{ – 4 \le x < 2}\\
{3 < x \le 4}
\end{array}} \right.$
Vậy $D = [ – 4,2) \cup (3,4].$

b) Tương tự, ta có: $\left\{ {\begin{array}{*{20}{l}}
{{x^2} – 25 \ge 0}\\
{42 + x – {x^2} > 0}
\end{array}} \right.$
Vậy $D = ( – 6, – 5| \cup [5,7).$

Ví dụ 3: Tìm tập xác định và tập giá trị của hàm số: $y = \sqrt {{{\log }_2}\left( {7 – 2x – {x^2}} \right)} .$

Giải

Hàm số xác định khi: $\left\{ {\begin{array}{*{20}{l}}
{7 – 2x – {x^2} > 0}\\
{{{\log }_2}\left( {7 – 2x – {x^2}} \right) \ge 0}
\end{array}} \right.$ $ \Leftrightarrow 7 – 2x – {x^2} \ge 1$ ${x^2} + 2x – 6 \le 0$ $ \Leftrightarrow – 1 – \sqrt 7 \le x \le – 1 + \sqrt 7 .$
Vậy tập xác định là $D = \left[ { – 1 – \sqrt 7 , – 1 + \sqrt 7 } \right].$

Ta có $\forall x \in D$: ${\log _2}\left( {7 – 2x – {x^2}} \right) \ge 0$ $ \Rightarrow y \ge 0.$

Vậy tập giá trị của hàm số là $[0, + \infty ).$

Ví dụ 4: Tìm tập xác định của các hàm số:

a) $y = \sqrt {{{\log }_{\frac{1}{3}}}(x – 3) – 1} .$

b) $y = \sqrt {{{\log }_{\frac{1}{2}}}\frac{{x – 1}}{{x + 5}}} .$

c) $y = \sqrt {{{\log }_{\frac{1}{5}}}\left( {{{\log }_5}\frac{{{x^2} + 1}}{{x + 3}}} \right)} .$

Giải

a) Hàm số xác định khi $\left\{ {\begin{array}{*{20}{l}}
{x – 3 > 0}\\
{{{\log }_{\frac{1}{3}}}(x – 3) – 1 \ge 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x > 3}\\
{x – 3 \le \frac{1}{3} \Leftrightarrow 3 < x \le \frac{{10}}{3}}
\end{array}} \right.$

Vậy $D = \left( {3,\frac{{10}}{3}} \right].$

b) Lập điều kiện: $\left\{ {\begin{array}{*{20}{l}}
{\frac{{x – 1}}{{x + 5}} > 0}\\
{{{\log }_{\frac{1}{2}}}\frac{{x – 1}}{{x + 5}} \ge 0}
\end{array}} \right.$

Giải hệ ta có $x > 1.$
Vậy $D = (1, + \infty ).$

c) Hàm số xác định khi $\left\{ {\begin{array}{*{20}{l}}
{{{\log }_{\frac{1}{5}}}\left( {{{\log }_5}\frac{{{x^2} + 1}}{{x + 3}}} \right) \ge 0}\\
{{{\log }_5}\frac{{{x^2} + 1}}{{x + 3}} > 0}\\
{\frac{{{x^2} + 1}}{{x + 3}} > 0}
\end{array}} \right.$ $ \Leftrightarrow 1 < \frac{{{x^2} + 1}}{{x + 3}} \le 5$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{\frac{{{x^2} – 5x – 14}}{{x + 3}} \le 0}\\
{\frac{{{x^2} – x – 2}}{{x + 3}} > 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x < – 3\:{\rm{ hoặc}}\: – 2 \le x \le 7}\\
{ – 3 < x < – 1\:{\rm{ hoặc }}\:x > 2}
\end{array}} \right.$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{ – 2 \le x < – 1}\\
{2 < x \le 7}
\end{array}} \right.$

Vậy tập xác định là $D = [ – 2, – 1) \cup (2,7].$

Ví dụ 5: Tìm tập xác định của các hàm số:

a) $y = {\log _2}\sqrt {\frac{{x – 3}}{{x + 1}}} .$

b) $y = \sqrt {{{\log }_{\frac{1}{2}}}\frac{{x – 1}}{{x + 5}}} – {\log _2}\sqrt {{x^2} – x – 6} .$

c) $y = {\log _3}\frac{{{x^2} + 4x + 3}}{{x – 2}}.$

Giải

a) Lập điều kiện $\left\{ {\begin{array}{*{20}{l}}
{x \ne – 1}\\
{\frac{{x – 3}}{{x + 1}} > 0}
\end{array}} \right.$
Suy ra $D = ( – \infty , – 1) \cup (3, + \infty ).$

b) $\left\{ {\begin{array}{*{20}{l}}
{{{\log }_{\frac{1}{2}}}\frac{{x – 1}}{{x + 5}} \ge 0}\\
{{x^2} – x – 6 > 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{0 < \frac{{x – 1}}{{x + 5}} \le 1}\\
{x < – 2\: {\rm{hoặc}}\:x > 3}
\end{array}} \right.$

Suy ra $D = (3, + \infty ).$

c) $\frac{{{x^2} + 4x + 3}}{{x – 2}} > 0.$
Suy ra $D = ( – 3, – 1) \cup (2, + \infty ).$

Ví dụ 6: Tìm tập xác định của hàm số: $y = \log \left( { – {x^2} + 3x + 4} \right)$ $ + \frac{1}{{\sqrt {{x^2} – x – 6} }}.$

Giải

Hàm số xác định khi: $\left\{ {\begin{array}{*{20}{l}}
{ – {x^2} + 3x + 4 > 0}\\
{{x^2} – x – 6 > 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{ – 1 < x < 4}\\
{x < – 2\:{\rm{hoặc}}\:x > 3}
\end{array}} \right.$ $ \Leftrightarrow 3 < x < 4.$

Tập xác định của hàm số là $D = (3;4).$

Ví dụ 7: Tìm miền xác định của hàm số: $y = \sqrt {{{\log }_3}\left( {\sqrt {{x^2} – 3x + 2} + 4 – x} \right)} .$

Giải

Hàm số xác định khi: $\left\{ {\begin{array}{*{20}{l}}
{{x^2} – 3x + 2 \ge 0}\\
{\sqrt {{x^2} – 3x + 2} + 4 – x \ge 1}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x \le 1\:{\rm{hoặc}}\:x \ge 2}\\
{\sqrt {{x^2} – 3x + 2} \ge x – 3}
\end{array}} \right.$

Giải ${\sqrt {{x^2} – 3x + 2} \ge x – 3}$, ta có: $\left\{ {\begin{array}{*{20}{l}}
{{x^2} – 3x + 2 \ge 0}\\
{x \le 3}
\end{array}} \right.$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{x \le 1}\\
{2 \le x \le 3}
\end{array}} \right.$ hoặc $\left\{ {\begin{array}{*{20}{l}}
{x \ge 3}\\
{{x^2} – 3x + 2 \ge {{(x – 3)}^2}}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x \ge 3}\\
{3x \ge 7}
\end{array}} \right.$ $ \Leftrightarrow x \ge 3.$ Suy ra $\left[ {\begin{array}{*{20}{l}}
{x \le 1}\\
{x \ge 2}
\end{array}} \right.$
Vậy $D = ( – \infty ,1] \cup [2, + \infty ).$

Ví dụ 8: Tìm tập xác định của hàm số: $y = {2^{\sqrt {\left| {x – 3} \right| – |8 – x|} }}$ $ + \sqrt {\frac{{ – {{\log }_{0,3}}(x – 1)}}{{\sqrt {{x^2} – 2x – 8} }}} .$

Hàm số xác định khi:
$\left\{ {\begin{array}{*{20}{l}}
{|x – 3| – |8 – x| \ge 0}\\
{x – 1 > 0}\\
{{{\log }_{0,3}}(x – 1) \le 0}\\
{{x^2} – 2x – 8 > 0}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{{(x – 3)}^2} \ge {{(8 – x)}^2}}\\
{x > 1}\\
{x – 1 \ge 1}\\
{x < – 2\:{\rm{hoặc}}\:x > 4}
\end{array}} \right.$ $ \Leftrightarrow x \ge \frac{{11}}{2}.$
Vậy $D = \left[ {\frac{{11}}{2}, + \infty } \right).$

Ví dụ 9: Tìm tập xác định của hàm số: $y = \sqrt {{{\log }_3}\left( {\frac{{1 + \log _a^2x}}{{1 + {{\log }_a}x}}} \right)} .$

Giải

Hàm số xác định khi:
${\log _3}\left( {\frac{{1 + \log _a^2x}}{{1 + {{\log }_a}x}}} \right) \ge 0$ $ \Leftrightarrow \frac{{1 + \log _a^2x}}{{1 + {{\log }_a}x}} \ge 1$ $ \Leftrightarrow \frac{{\log _a^2x – {{\log }_a}x}}{{1 + {{\log }_a}x}} \ge 0$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{{\log }_a}x \ge 1}\\
{ – 1 < {{\log }_a}x \le 0}
\end{array}} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \ge a\\
\frac{1}{a} < x \le 1
\end{array} \right.\:{\rm{nếu}}\:a > 1\\
\left\{ \begin{array}{l}
0 < x \le a\\
1 \le x < \frac{1}{a}
\end{array} \right.\:{\rm{nếu}}\:0 < a < 1
\end{array} \right.$

Vậy:

  • Với $a>1$: $D = \left( {\frac{1}{a},1} \right] \cup [a, + \infty ).$
  • Với $0<a<1$: $D = \left( {0,{\rm{ }}a} \right] \cup \left[ {1,\frac{1}{a}} \right).$

Ví dụ 10: Tìm các giá trị của m để hàm số $y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} – 2x + 3m} \right)} }}$ xác định $\forall x \in R.$

Giải

Hàm số xác định $\forall x \in R$ khi ${\log _3}\left( {{x^2} – 2x + 3m} \right) > 0$ $ \Leftrightarrow {x^2} – 2x + 3m > 1$ $ \Leftrightarrow \quad {x^2} – 2x + 3m – 1 > 0$ $\forall x \in R.$

Vì $a = 1 > 0$ nên $\Delta ‘ < 0$ $ \Leftrightarrow 1 – (3m – 1) < 0$ $ \Leftrightarrow m > \frac{2}{3}.$

Với $m > \frac{2}{3}$, hàm số đã cho xác định $\forall x \in R.$