Tháng Ba 21, 2023

Cho hình vuông \(ABCD.\) Gọi \(I\) là một điểm nằm giữa \(A\) và \(B.\) Tia \(DI\) và tia \(CB\) cắt nhau ở \(K.\) Kẻ đường thẳng qua \(D,\) vuông góc với \(DI,\) cắt đường thẳng \(BC\) tại \(L.\) Chứng minh rằng : a) \(\Delta DIL\) là một tam giác cân. b) Tổng \(\frac{1}{{D{I^2}}} + \frac{1}{{D{K^2}}}\) không đổi khi \(I\) thay đổi trên cạnh \(AB.\)

Cho hình vuông \(ABCD.\) Gọi \(I\) là một điểm nằm giữa \(A\) và \(B.\) Tia \(DI\) và tia \(CB\) cắt nhau ở \(K.\) Kẻ đường thẳng qua \(D,\) vuông góc với \(DI,\) cắt đường thẳng \(BC\) tại \(L.\) Chứng minh rằng :

a) \(\Delta DIL\) là một tam giác cân.

b) Tổng \(\frac{1}{{D{I^2}}} + \frac{1}{{D{K^2}}}\) không đổi khi \(I\) thay đổi trên cạnh \(AB.\)

Phương pháp giải:

a) Chứng minh \(DI = DL\) dựa vào \(\Delta DAI = \Delta DCL.\)

b) Áp dụng hệ thức lượng trong \(\Delta DLK\) vuông tại \(D,\) đường cao \(DC\) để chứng minh.

Lời giải chi tiết:

a) Xét \(\Delta DAI\) và \(\Delta DCL\) có:

\(DA = DC\) (\(ABCD\) là hình vuông);

\(\angle ADI = \angle CDL\) (cùng phụ với \(\angle CDI\))

\(\angle DAI = \angle DCL = {90^o}\)

\( \Rightarrow \Delta DAI = \Delta DCL\,\,\,\left( {c – g – c} \right) \Rightarrow DI = DL\) (2 cạnh tương ứng)

\( \Rightarrow \Delta DIL\) là tam giác cân tại \(D.\)

b) Áp dụng hệ thức lượng trong \(\Delta DLK\) vuông tại \(D,\) đường cao \(DC\) ta có:

\(\frac{1}{{D{I^2}}} + \frac{1}{{D{K^2}}} = \frac{1}{{D{L^2}}} + \frac{1}{{D{K^2}}} = \frac{1}{{D{C^2}}}\) không đổi.