Vẽ đồ thị \(y = \frac{{ – 2}}{3}x\) và \(y = \frac{{ – 2}}{3}x + 1\) trên cùng một hệ trục tọa độ \(Oxy\) và nhận xét về đồ thị của hai hàm số này.
Phương pháp giải:
Cách vẽ đồ thị hàm số \(y = ax + b\,\,\left( {a \ne 0} \right)\).
Cho \(x = 0 \Rightarrow y = b \Rightarrow A\left( {0;b} \right)\)
Cho \(y = 0 \Rightarrow x = \frac{{ – b}}{a} \Rightarrow B\left( { – \frac{b}{a};0} \right)\)
Vẽ đường thẳng đi qua hai điểm \(A\left( {0;b} \right)\) và \(B\left( { – \frac{b}{a};0} \right)\).
Lời giải chi tiết:
\(y = \frac{{ – 2}}{3}x\) đi qua \(A\left( {0;0} \right)\)và \(B\left( {3; – 2} \right)\)
\(y = \frac{{ – 2}}{3}x + 1\) đi qua \(A\left( {0;1} \right)\)và \(B\left( {\frac{3}{2};0} \right)\)
Từ đó ta có đồ thị.
Nhìn trên đồ thị ta có 2 đồ thị song song với nhau .