A. KIẾN THỨC CẦN GHI NHỚ
1. ${\log _a}f\left( x \right) = {\log _a}g\left( x \right)$ $ \Leftrightarrow \left\{ \begin{array}{l}
f\left( x \right) = g\left( x \right)\\
f\left( x \right) \ge 0{\rm{ }}\left( {g\left( x \right) \ge 0} \right)
\end{array} \right.$
2. ${\log _a}f\left( x \right) = b \Leftrightarrow f\left( x \right) = {a^b}.$
3. ${\log _a}f\left( x \right) > {\log _a}g\left( x \right)$ $(*).$
- Nếu $a > 1$ thì $\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}
f\left( x \right) > g\left( x \right)\\
g\left( x \right) > 0
\end{array} \right.$ - Nếu $0 < a < 1$ thì $\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}
f\left( x \right) < g\left( x \right)\\
f\left( x \right) > 0
\end{array} \right.$
Chú ý: ${\log _a}f\left( x \right)$ có nghĩa $ \Leftrightarrow \left\{ \begin{array}{l} f\left( x \right) > 0\\ 0 < a \ne 1 \end{array} \right.$