Tháng Tư 19, 2024

Cho các số thực \(x,\,\,y,\,\,z \ne 0\) thỏa mãn: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0.\) Chứng minh rằng \(\frac{{xy}}{{{z^2}}} + \frac{{yz}}{{{x^2}}} + \frac{{zx}}{{{y^2}}} = 3\).

Cho các số thực \(x,\,\,y,\,\,z \ne 0\) thỏa mãn: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0.\) Chứng minh rằng \(\frac{{xy}}{{{z^2}}} + \frac{{yz}}{{{x^2}}} + \frac{{zx}}{{{y^2}}} = 3\).

Phương pháp giải:

Bước 1: Chứng minh rằng \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \Rightarrow \frac{1}{{{x^3}}} + \frac{1}{{{y^3}}} + \frac{1}{{{z^3}}} = \frac{3}{{xyz}}\) bằng cách đặt \(\frac{1}{x} = a;\,\,\frac{1}{y} = b;\,\,\frac{1}{z} = c\) và sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\) khai triển \({a^3} + {b^3} + {c^3}\) dựa vào \(a + b + c = 0 \Leftrightarrow c = – a – b\), rút gọn được \(3abc\).

Bước 2: Biến đổi \(\frac{{xy}}{{{z^2}}} + \frac{{yz}}{{{x^2}}} + \frac{{zx}}{{{y^2}}}\) bằng cách nhân cả tử và mẫu của mỗi hạng tử lần lượt với \(z,\,x,\,y\) thu gọn bằng cách áp dụng kết quả của bước 1: \(\frac{1}{{{x^3}}} + \frac{1}{{{y^3}}} + \frac{1}{{{z^3}}} = \frac{3}{{xyz}}\)để chứng minh \(VT = 3.\)

Lời giải chi tiết:

Đặt \(\frac{1}{x} = a;\,\,\frac{1}{y} = b;\,\,\frac{1}{z} = c\,\,\,\,\left( {a,\,\,b,\,\,c \ne 0} \right).\)

\( \Rightarrow a + b + c = 0 \Leftrightarrow c = – a – b\)

\(\begin{array}{l} \Rightarrow {a^3} + {b^3} + {c^3} = {a^3} + {b^3} + {\left( { – a – b} \right)^3}\\ = {a^3} + {b^3} – {\left( {a + b} \right)^3}\\ = {a^3} + {b^3} – \left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right)\\ = {a^3} + {b^3} – {a^3} – 3{a^2}b – 3a{b^2} – {b^3}\\ = – 3ab\left( {a + b} \right) = 3ab\left( { – a – b} \right) = 3abc.\end{array}\)

Vậy với \(a + b + c = 0\) ta có \({a^3} + {b^3} + {c^3} = 3abc\).

Từ đó ta có: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \Rightarrow \frac{1}{{{x^3}}} + \frac{1}{{{y^3}}} + \frac{1}{{{z^3}}} = \frac{3}{{xyz}}\)

\( \Rightarrow \frac{{xy}}{{{z^2}}} + \frac{{yz}}{{{x^2}}} + \frac{{zx}}{{{y^2}}} = \frac{{xyz}}{{{z^3}}} + \frac{{xyz}}{{{x^3}}} + \frac{{xyz}}{{{y^3}}}\) \( = xyz\left( {\frac{1}{{{x^3}}} + \frac{1}{{{y^3}}} + \frac{1}{{{z^3}}}} \right) = xyz.\frac{3}{{xyz}} = 3\)(đpcm)