Tháng Tư 15, 2024

Cho \(A = \left( {1 – \frac{{\sqrt x }}{{1 + \sqrt x }}} \right):\left( {\frac{{\sqrt x + 3}}{{\sqrt x – 2}} + \frac{{\sqrt x + 2}}{{3 – \sqrt x }} + \frac{{\sqrt x + 2}}{{x – 5\sqrt x + 6}}} \right)\) với \(x \ge 0,x \ne 4,x \ne 9.\) a) Rút gọn

Cho \(A = \left( {1 – \frac{{\sqrt x }}{{1 + \sqrt x }}} \right):\left( {\frac{{\sqrt x + 3}}{{\sqrt x – 2}} + \frac{{\sqrt x + 2}}{{3 – \sqrt x }} + \frac{{\sqrt x + 2}}{{x – 5\sqrt x + 6}}} \right)\) với \(x \ge 0,x \ne 4,x \ne 9.\)

a) Rút gọn A.

b) Tìm \(x \in Z\) để \(A \in Z\)

c) Tìm x để \(A < 0.\)

A \(\begin{array}{l}

a)\,\,A = \frac{{\sqrt x – 2}}{{\sqrt x + 1}}\\

b)\,\,x \in \left\{ {0} \right\}\\

c)\,\,0 \le x < 4

\end{array}\)

B \(\begin{array}{l}

a)\,\,A = \frac{{\sqrt x – 2}}{{\sqrt x + 1}}\\

b)\,\,x \in \left\{ {0;4} \right\}\\

c)\,\,0 < x < 4

\end{array}\)

C \(\begin{array}{l}

a)\,\,A = \frac{3}{{\sqrt x + 1}}\\

b)\,\,x \in \left\{ {0;4} \right\}\\

c)\,\,0 \le x < 4

\end{array}\)

D \(\begin{array}{l}

a)\,\,A = \frac{{\sqrt x – 2}}{{\sqrt x + 1}}\\

b)\,\,x \in \left\{ {0; \pm 4} \right\}\\

c)\,\,0 \le x < 4

\end{array}\)

Hướng dẫn Chọn đáp án là: A

Phương pháp giải:

a) Quy đồng, rút gọn.

b) Đưa biểu thức về dạng \(A\left( x \right) + \frac{C}{{B\left( x \right)}}\) với C là hằng số. Để biểu thức đó là số nguyên thì \(B\left( x \right) \in U\left( C \right)\).

c) Nhận xét mẫu số trước khi giải bất phương trình, lưu ý kết hợp điều kiện.

Lời giải chi tiết:

a) Với \(x \ge 0,x \ne 4,x \ne 9.\) Ta có:

\(\begin{array}{l}A = \left( {1 – \frac{{\sqrt x }}{{1 + \sqrt x }}} \right):\left( {\frac{{\sqrt x + 3}}{{\sqrt x – 2}} + \frac{{\sqrt x + 2}}{{3 – \sqrt x }} + \frac{{\sqrt x + 2}}{{x – 5\sqrt x + 6}}} \right)\\A = \frac{1}{{\sqrt x + 1}}:\left( {\frac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x – 3} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x – 3} \right)}} – \frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x – 3} \right)}} + \frac{{\sqrt x + 2}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x – 3} \right)}}} \right)\\A = \frac{1}{{\sqrt x + 1}}:\frac{{x – 9 – \left( {x – 4} \right) + \sqrt x + 2}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x – 3} \right)}}\\A = \frac{1}{{\sqrt x + 1}}:\frac{{\sqrt x – 3}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x – 3} \right)}} = \frac{{\sqrt x – 2}}{{\sqrt x + 1}}.\end{array}\)

b) \(A = \frac{{\sqrt x – 2}}{{\sqrt x + 1}} = 1 – \frac{3}{{\sqrt x + 1}}\left( {x \ge 0} \right)\)

Để \(A \in Z\) với x nguyên thì \(\sqrt x + 1\) là ước nguyên dương của 3 do \(\sqrt x + 1 > 0\)

.\( \Rightarrow \left[ \begin{array}{l}\sqrt x + 1 = 1 \Leftrightarrow x = 0\,\,\,\left( {tm} \right)\\\sqrt x + 1 = 3 \Leftrightarrow x = 4\,\,\left( {ktm} \right)\end{array} \right.\)

Vậy với \(x = 0\) thì \(A \in Z\)

c) \(A < 0 \Leftrightarrow \frac{{\sqrt x – 2}}{{\sqrt x + 1}} < 0.\)

Do \(\sqrt x + 1 > 0 \Rightarrow \frac{{\sqrt x – 2}}{{\sqrt x + 1}} < 0 \Leftrightarrow \sqrt x – 2 < 0 \Leftrightarrow x < 4.\)

Kết với \(x \ge 0\), suy ra \(A > 0 < = > 0 \le x < 4.\)

Vậy \(0 \le x < 4\) thì \(A < 0.\)