Tháng Hai 4, 2026

Từ tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\left( {a,b,c,d \ne 0} \right)\) suy ra được tỷ lệ thức sau:

Từ tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\left( {a,b,c,d \ne 0} \right)\) suy ra được tỷ lệ thức sau:

A. \(\frac{a}{d} = \frac{c}{b}\)

B. \(\frac{b}{a} = \frac{c}{d}\)

C. \(\frac{b}{a} = \frac{d}{c}\)

D. \(\frac{a}{b} = \frac{d}{c}\)

Hướng dẫn

Chọn đáp án là: C

Phương pháp giải:

Lưu ý khi hoán vị các số hạng.

Hoán vị các số hạng: Từ tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\left( {a,b,c,d \ne 0} \right)\) ta có thể:

+ Hoán vị các ngoại tỉ với nhau: \(\frac{d}{b} = \frac{c}{a}\) + Hoán vị các trung tỉ với nhau: \(\frac{a}{c} = \frac{b}{d}\)

+ Hoán vị các ngoại tỉ với nhau, các trung tỉ với nhau: \(\frac{d}{c} = \frac{b}{a}\)

Hoán vị các số hạng: Từ tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\left( {a,b,c,d \ne 0} \right)\) ta có thể:

+ Hoán vị các ngoại tỉ với nhau: \(\frac{d}{b} = \frac{c}{a}\) + Hoán vị các trung tỉ với nhau: \(\frac{a}{c} = \frac{b}{d}\)

+ Hoán vị các ngoại tỉ với nhau, các trung tỉ với nhau: \(\frac{d}{c} = \frac{b}{a}\)

Trong các đáp án đã cho đáp án C là chính xác nhất.

Chọn C