Tháng Hai 3, 2026

Trong tập các số phức, cho phương trình \({{z}^{2}}-6z+m=0,\,\,m\in \mathbb{R}\,\,\left( 1 \right).\) Gọi \({{m}_{0}}\) là một giá trị của \(m\) đẻ phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({{z}_{1}},{{z}_{2}}\) thỏa mãn \({{z}_{1}}.\overline{{{z}_{1}}}={{z}_{2}}.\overline{{{z}_{2}}.}\) Hỏi trong khoảng \(\left( 0;20 \right)\) có bao nhiêu giá trị \({{m}_{0}}\in \mathbb{N}?\)

Trong tập các số phức, cho phương trình \({{z}^{2}}-6z+m=0,\,\,m\in \mathbb{R}\,\,\left( 1 \right).\) Gọi \({{m}_{0}}\) là một giá trị của \(m\) đẻ phương trình \(\left( 1 …

Gọi \({{z}_{1}},\,\,{{z}_{2}}\) là hai nghiệm của phương trình \(3{{z}^{2}}-z+4=0\). Khi đó \(P=\frac{{{z}_{1}}}{{{z}_{2}}}+\frac{{{z}_{2}}}{{{z}_{1}}}\)bằng

Gọi \({{z}_{1}},\,\,{{z}_{2}}\) là hai nghiệm của phương trình \(3{{z}^{2}}-z+4=0\). Khi đó \(P=\frac{{{z}_{1}}}{{{z}_{2}}}+\frac{{{z}_{2}}}{{{z}_{1}}}\)bằng A. \(-\frac{23}{12}\). B. \(\frac{23}{12}\). C. \(-\frac{23}{24}\). D. \(\frac{23}{24}\). Hướng dẫn Chọn đáp án …