Tháng Tư 25, 2024

Sử dụng phương pháp đổi biến số dạng 2 tìm nguyên hàm $I = \int {f(x)dx} $

I. PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước:

  • Bước 1: Chọn $t = \psi (x)$, trong đó $\psi (x)$ là hàm số mà ta chọn cho thích hợp.
  • Bước 2: Xác định vi phân $dt = \psi'(x)dx.$
  • Bước 3: Biểu thị $f(x)dx$ theo $t$ và $dt.$ Giả sử rằng $f(x)dx = g(t)dt.$
  • Bước 4: Khi đó $I = \int {g(t)dt.} $

Lưu ý: Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu trên thông thường là:

  • Dấu hiệu $f(x,\sqrt {\varphi (x)} )$, đặt $t = \sqrt {\varphi (x)} .$
  • Dấu hiệu $f(x) = \frac{{a.\sin x + b.\cos x}}{{c.\sin x + d.\cos x + e}}$, đặt $t = \tan \frac{x}{2}$ (với $\cos \frac{x}{2} \ne 0$).
  • Dấu hiệu $f(x) = \frac{1}{{\sqrt {(x + a)(x + b)} }}$: với $x + a > 0$ và $x + b > 0$, đặt $t = \sqrt {x + a} + \sqrt {x + b} $; với $x + a < 0$ và $x + b < 0$, đặt $t = \sqrt { – x – a} + \sqrt { – x – b} .$

II. VÍ DỤ

Ví dụ 1: Tìm nguyên hàm $I = \int {{x^3}{{\left( {2 – 3{x^2}} \right)}^8}dx} .$

Đặt $t = 2 – 3{x^2} \Rightarrow \left\{ \begin{array}{l}
dt = – 6xdx\\
{x^2} = \frac{{2 – t}}{3}
\end{array} \right.$
Khi đó: ${x^3}{\left( {2 – 3{x^2}} \right)^8}dx$ $ = {x^2}{\left( {2 – 3{x^2}} \right)^8}xdx$ $ = \frac{{2 – t}}{3}{t^8}\left( { – \frac{1}{6}dt} \right)$ $ = \frac{1}{{18}}\left( {{t^9} – 2{t^8}} \right)dt.$
Nên: $I = \frac{1}{{18}}\int {\left( {{t^9} – 2{t^8}} \right)dt} $ ${ = \frac{1}{{180}}{t^{10}} – \frac{1}{{81}}{t^9} + C}.$

Ví dụ 2: Tìm nguyên hàm $I = \int {\frac{{{x^2}dx}}{{\sqrt {1 – x} }}} .$

Đặt $t = \sqrt {1 – x} \Rightarrow x = 1 – {t^2}.$
Suy ra: $dx = – 2tdt.$
$\frac{{{x^2}dx}}{{\sqrt {1 – x} }} = \frac{{{{\left( {1 – {t^2}} \right)}^2}( – 2tdt)}}{t}$ $ = – 2\left( {{t^4} – 2{t^2} + 1} \right)dt.$
Khi đó: $I = – 2\int {\left( {{t^4} – 2{t^2} + 1} \right)dt} $ $ = – 2\left( {\frac{{{t^5}}}{5} – \frac{{2{t^3}}}{3} + t} \right) + C$ $ = \frac{{ – 2}}{{15}}\left( {3{x^2} + 4x + 8} \right)\sqrt {1 – x} + C.$

Ví dụ 3: Tìm nguyên hàm $I = \int {{{\sin }^3}x\sqrt {\cos x} dx} .$

Đặt $t = \sqrt {\cos x} \Rightarrow {t^2} = \cos x.$
Suy ra: $2tdt = – \sin xdx.$
${\sin ^3}x\sqrt {\cos x} dx$ $ = {\sin ^2}x\sqrt {\cos x} \sin xdx$ $ = \left( {1 – {{\cos }^2}x} \right)\sqrt {\cos x} \sin xdx$
$ = (1 – {t^4})t( – 2tdt)$ $ = (2{t^6} – 2{t^2})dt.$
Khi đó: $ I = \int {(2{t^6} – 2{t^2})dt} $ $ = \frac{{2{t^7}}}{7} – \frac{{2{t^3}}}{3} + C$ $ = \frac{{2{{\left( {\sqrt {\cos x} } \right)}^7}}}{7} – \frac{{2{{\left( {\sqrt {\cos x} } \right)}^3}}}{3} + C.$

Ví dụ 4: Tìm nguyên hàm $I = \int {\frac{{dx}}{{\sqrt {1 + {e^x}} }}} .$

Đặt $t = \sqrt {1 + {e^x}} \Rightarrow {t^2} = 1 + {e^x}.$
Suy ra: $2tdt = {e^x}dx \Rightarrow dx = \frac{{2tdt}}{{{t^2} – 1}}.$
$\frac{{dx}}{{\sqrt {1 + {e^x}} }} = \frac{{2tdt}}{{t\left( {{t^2} – 1} \right)}}$ $ = \frac{{2dt}}{{{t^2} – 1}} = \left( {\frac{1}{{t – 1}} – \frac{1}{{t + 1}}} \right)dt.$
Khi đó: $I = \int {\left( {\frac{1}{{t – 1}} – \frac{1}{{t + 1}}} \right)dt} $ $ = \ln \left| {\frac{{t – 1}}{{t + 1}}} \right| + C$ $ = \ln \left| {\frac{{\sqrt {1 + {e^x}} – 1}}{{\sqrt {1 + {e^x}} + 1}}} \right| + C.$

Ví dụ 5: Tìm nguyên hàm $I = \int {\frac{{dx}}{{\sqrt {{x^2} + a} }}} $, với $a ≠ 0.$

Đặt $t = x + \sqrt {{x^2} + a} .$
Suy ra: $dt = \left( {1 + \frac{x}{{\sqrt {{x^2} + a} }}} \right)dx$ $ = \frac{{\sqrt {{x^2} + a} + x}}{{\sqrt {{x^2} + a} }}dx$ $ \Leftrightarrow \frac{{dx}}{{\sqrt {{x^2} + a} }} = \frac{{dt}}{t}.$
Khi đó: $I = \int {\frac{{dt}}{t} = \ln \left| t \right|} + C$ $ = \ln \left| {x + \sqrt {{x^2} + a} } \right| + C.$

Ví dụ 6: Tìm nguyên hàm $\int {\frac{{dx}}{{\sqrt {\left( {x + 1} \right)\left( {x + 2} \right)} }}} .$

Ta xét hai trường hợp:
+ Với $\left\{ \begin{array}{l}
x + 1 > 0\\
x + 2 > 0
\end{array} \right. \Leftrightarrow x > – 1.$
Đặt $t = \sqrt {x + 1} + \sqrt {x + 2} .$
Suy ra: $dt = \left( {\frac{1}{{2\sqrt {x + 1} }} + \frac{1}{{2\sqrt {x + 2} }}} \right)dx$ $ = \frac{{\left( {\sqrt {x + 1} + \sqrt {x + 2} } \right)dx}}{{2\sqrt {(x + 1)(x + 2)} }}$
$ \Leftrightarrow \frac{{dx}}{{\sqrt {(x + 1)(x + 2)} }} = \frac{{2dt}}{t}.$
Khi đó: $I = 2\int {\frac{{dt}}{t} = 2\ln \left| t \right| + C} $ ${ = 2\ln \left| {\sqrt {x + 1} + \sqrt {x + 2} } \right|} + C.$
+ $\left\{ \begin{array}{l}
x + 1 < 0\\
x + 2 < 0
\end{array} \right. \Leftrightarrow x < – 2.$
Đặt $t = \sqrt { – \left( {x + 1} \right)} + \sqrt { – \left( {x + 2} \right)} .$
Suy ra: $ \Leftrightarrow \frac{{dx}}{{\sqrt {(x + 1)(x + 2)} }} = – \frac{{2dt}}{t}.$
Khi đó: $I = – 2\int {\frac{{dt}}{t} = – 2\ln \left| t \right|} + C$ $ = – 2\ln \left| {\sqrt { – \left( {x + 1} \right)} + \sqrt { – \left( {x + 2} \right)} } \right| + C.$