Tháng Bảy 4, 2022

Sử dụng phương pháp đổi biến số dạng 1 tìm nguyên hàm $I = \int {f(x)dx} $

 I. PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước:

  •  Bước 1: Chọn $x = \varphi (t)$, trong đó $\varphi (t)$ là hàm số mà ta chọn cho thích hợp.
  •  Bước 2: Lấy vi phân $dx = \varphi'(t)dt.$
  • Bước 3: Biểu thị $f(x)dx$ theo $t$ và $dt.$ Giả sử rằng $f(x)dx = g(t)dt.$
  • Bước 4: Khi đó $I = \int {g(t)dt} .$

Lưu ý: Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu trên thông thường là:

  • Dấu hiệu $\sqrt {{a^2} – {x^2}} $, đặt $x = |a|\sin t$ với $\frac{{ – \pi }}{2} \le t \le \frac{\pi }{2}$ hoặc $x = |a|\cos t$ với $0 \le t \le \pi .$
  • Dấu hiệu $\sqrt {{x^2} – {a^2}} $, đặt $x = \frac{{|a|}}{{\sin t}}$ với $t \in \left[ { – \frac{\pi }{2};\frac{\pi }{2}} \right]\backslash \left\{ 0 \right\}$ hoặc $x = \frac{{|a|}}{{\cos t}}$ với $t \in \left[ {0;\pi } \right]\backslash \left\{ {\frac{\pi }{2}} \right\}.$
  • Dấu hiệu $\sqrt {{a^2} + {x^2}} $, đặt $x = |a|\tan t$ với $ – \frac{\pi }{2} < t < \frac{\pi }{2}$ hoặc $x = |a|\cot t$ với $0 < t < \pi .$
  • Dấu hiệu $\sqrt {\frac{{a + x}}{{a – x}}} $ hoặc $\sqrt {\frac{{a – x}}{{a + x}}} $, đặt $x = a\cos 2t.$
  • Dấu hiệu $\sqrt {(x – a)(b – x)} $, đặt $x = a + (b – a){\sin ^2}t.$

II. VÍ DỤ

Ví dụ 1: Tìm nguyên hàm $I = \int {\frac{{dx}}{{\sqrt {{{(1 – {x^2})}^3}} }}} .$

Đặt $x = sint$; $ – \frac{\pi }{2} < t < \frac{\pi }{2}.$

Suy ra: $dx = \cos tdt$ và $\frac{{dx}}{{\sqrt {{{(1 – {x^2})}^3}} }} = \frac{{\cos tdt}}{{{{\cos }^3}t}}$ $ = \frac{{dt}}{{{{\cos }^2}t}} = d(\tan t).$

Khi đó: $I = \int {d(\tan t) = \tan t + C} $ ${ = \frac{x}{{\sqrt {1 – {x^2}} }} + C}.$

Chú ý: Trong ví dụ trên sở dĩ ta có: $\sqrt {{{(1 – {x^2})}^3}} = {\cos ^3}t$ và $\tan t = \frac{x}{{\sqrt {1 – {x^2}} }}$ là bởi: $ – \frac{\pi }{2} < t < \frac{\pi }{2} \Rightarrow \cos t > 0$ $ \Rightarrow \sqrt {{{\cos }^2}t} = \cos t$ và $\cos t = \sqrt {1 – {{\sin }^2}t} = \sqrt {1 – {x^2}} .$

Ví dụ 2: Tìm nguyên hàm $I = \int {\frac{{{x^2}dx}}{{\sqrt {{x^2} – 1} }}} .$

Vì điều kiện $|x| > 1$, ta xét hai trường hợp:
+ Với $x > 1$:
Đặt $x = \frac{1}{{\sin 2t}}$; $0 < t < \frac{\pi }{4}.$
Suy ra: $dx = \frac{{2\cos 2tdt}}{{{{\sin }^2}2t}}.$

$\frac{{{x^2}dx}}{{\sqrt {{x^2} – 1} }} = – \frac{{2dt}}{{{{\sin }^3}2t}}$ $ = – \frac{{2{{(co{s^2}t + {{\sin }^2}t)}^2}dt}}{{8{{\sin }^3}t{{\cos }^3}t}}$

$ = – \frac{1}{4}(\cot t.\frac{1}{{{{\sin }^2}t}}$ $ + \tan t.\frac{1}{{{{\cos }^2}t}} + \frac{2}{{\tan t}}.\frac{2}{{{{\cos }^2}t}})$

$ = – \frac{1}{4}[ – \cot t.d(\cot t)$ $ + \tan t.d(\tan t) + 2\frac{{d(\tan t)}}{{\tan t}}].$

Khi đó: $I = – \frac{1}{4}[ – \int {\cot t.d(\cot t)} $ $ + \int {\tan t.d(\tan t)} + 2\int {\frac{{d(\tan t)}}{{\tan t}}} ]$

$ = – \frac{1}{4}( – \frac{1}{2}{\cot ^2}t + \frac{1}{2}{\tan ^2}t$ $ + 2\ln |\tan t|) + C$

$ = \frac{1}{8}\left( {{{\cot }^2}t – {{\tan }^2}t} \right)$ $ – \frac{1}{2}\ln |\tan t| + C$

$ = \frac{1}{2}x\sqrt {{x^2} – 1} $ $ – \frac{1}{2}\ln |x – {x^2} – 1| + C.$

Với $x < –1$: Bạn đọc biến đổi tương tự.

Chú ý: Trong ví dụ trên sở dĩ ta có: ${\cot ^2}t – {\tan ^2}t = 4x\sqrt {{x^2} – 1} $ và $\tan t = x – \sqrt {{x^2} – 1} $ là bởi:
${\cot ^2}t – {\tan ^2}t = \frac{{{{\cos }^4}t – {{\sin }^4}t}}{{{{\cos }^2}t.{{\sin }^2}t}}$ $ = \frac{{4\cos 2t}}{{{{\sin }^2}2t}} = \frac{{4\sqrt {1 – {{\sin }^2}2t} }}{{{{\sin }^2}2t}}$ $ = \frac{4}{{\sin 2t}}\sqrt {\frac{1}{{{{\sin }^2}2t}} – 1} .$
$\tan t = \frac{{\sin t}}{{\cos t}}$ $ = \frac{{2{{\sin }^2}t}}{{2\sin t.\cos t}} = \frac{{1 – \cos 2t}}{{\sin 2t}}$ $ = \frac{1}{{\sin 2t}} – \sqrt {\frac{{{{\cos }^2}2t}}{{{{\sin }^2}2t}}} $ $ = \frac{1}{{\sin 2t}} – \sqrt {\frac{1}{{{{\sin }^2}2t}} – 1} .$

Ví dụ 3: Tìm nguyên hàm $I = \int {\frac{{dx}}{{\sqrt {{{(1 + {x^2})}^3}} }}} .$

Đặt $x = tant$; $ – \frac{\pi }{2} < t < \frac{\pi }{2}.$

Suy ra: $dx = \frac{{dt}}{{{{\cos }^2}t}}.$

$\frac{{dx}}{{\sqrt {{{(1 + {x^2})}^3}} }}$ $ = \frac{{{{\cos }^3}tdt}}{{{{\cos }^2}t}} = \cos tdt.$

Khi đó: $I = \int {\cos tdt = \sin t + C} $ ${ = \frac{x}{{\sqrt {1 + {x^2}} }} + C}.$
Chú ý:

1. Trong ví dụ trên sở dĩ ta có: $\frac{1}{{\sqrt {1 + {x^2}} }} = \cos t$ và $\sin t = \frac{x}{{\sqrt {1 + {x^2}} }}$ là bởi: $ – \frac{\pi }{2} < t < \frac{\pi }{2} \Rightarrow \cos t > 0$ $ \Rightarrow \left\{ \begin{array}{l}
\sqrt {{{\cos }^2}t} = \cos t\\
\sin t = \tan t.\cos t = \frac{x}{{\sqrt {1 + {x^2}} }}
\end{array} \right.$

2. Phương pháp trên được áp dụng để giải bài toán tổng quát: $I = \int {\frac{{dx}}{{\sqrt {{{\left( {{a^2} + {x^2}} \right)}^{2k + 1}}} }}} $ với $k ∈ Z.$