Hưởng ứng phong trào: “Phát triển văn hóa đọc trong kỷ nguyên số”, ba lớp 7A, 7B, 7C đóng góp cho thư viện nhà trường được 300 quyển sách. Biết rằng số sách đóng góp cho thư viện của ba lớp 7A, 7B, 7C tỉ lệ với 5; 3; 7. Tính số sách đóng góp cho thư viện của mỗi lớp.
A. Ba lớp 7A, 7B, 7C đóng góp cho thư viện lần lượt 140, 60, 100 quyển sách
B. Ba lớp 7A, 7B, 7C đóng góp cho thư viện lần lượt 60, 140, 100 quyển sách
C. Ba lớp 7A, 7B, 7C đóng góp cho thư viện lần lượt 100, 60, 140 quyển sách
D. Ba lớp 7A, 7B, 7C đóng góp cho thư viện lần lượt 150, 60, 140 quyển sách
Hướng dẫn
Chọn đáp án là: C
Phương pháp giải:
+) Phân tích kỹ đầu bài, gọi số sách đóng góp cho thư viện của ba lớp 7A, 7B, 7C lần lượt là a, b, c
+) Từ dãy tỉ số bằng nhảu rút b, c theo a thế vào biểu thức từ dữ kiện đầu bài để giải tìm a, b, c
Gọi số sách đóng góp cho thư viện của ba lớp 7A, 7B, 7C lần lượt là a, b, c (a, b, c \( \in {\mathbb{N}^*}\); a , b, c < 300)
Ba lớp 7A, 7B, 7C đóng góp cho thư viện nhà trường được 300 quyển sách nên: \(a + b + c = 300\) (1)
Số sách đóng góp cho thư viện của ba lớp 7A, 7B, 7C tỉ lệ với 5; 3; 7 nên:
\(a:b:c = 5:3:7 \Rightarrow \frac{a}{5} = \frac{b}{3} = \frac{c}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\begin{array}{l}\frac{a}{5} = \frac{b}{3} = \frac{c}{7} = \frac{{a + b + c}}{{5 + 3 + 7}} = \frac{{300}}{{15}} = 20\\ \Rightarrow \left\{ \begin{array}{l}a = 20.5 = 100\;\;\;\left( {tm} \right)\\b = 20.3 = 60\;\;\;\;\;\left( {tm} \right)\\c = 20.7 = 140\;\;\;\;\left( {tm} \right)\end{array} \right..\end{array}\)
Vậy ba lớp 7A, 7B, 7C đóng góp cho thư viện lần lượt 100, 60, 140 quyển sách.