\(\frac{{ – {{22}^{33}}{{.33}^{55}}.{{\left( { – 55} \right)}^{22}}}}{{{{\left( { – 6} \right)}^{33}}.{{\left( { – 15} \right)}^{22}}{{.11}^{111}}}}\)
Kết quả của phép tính là:
A. \(\frac{1}{{14}}\)
B. \(\frac{1}{{13}}\)
C. \(\frac{1}{{12}}\)
D. \(\frac{1}{{11}}\)
Hướng dẫn
Chọn đáp án là: D
Phương pháp giải:
Sử dụng kiến thức về căn bậc hai.
Qui ước \({a^0} = 1.\)
Và \({\left( {{a^m}} \right)^n} = {a^{m.n}};\,\frac{{{a^m}}}{{{a^n}}} = {a^{m – n}}\)
\(\frac{{ – {{22}^{33}}{{.33}^{55}}.{{\left( { – 55} \right)}^{22}}}}{{{{\left( { – 6} \right)}^{33}}.{{\left( { – 15} \right)}^{22}}{{.11}^{111}}}}\)
\( = \frac{{ – {{22}^{33}}{{.33}^{55}}{{.55}^{22}}}}{{ – {6^{33}}{{.15}^{22}}{{.11}^{111}}}}\)
\(\begin{array}{l} = \frac{{ – {{1.2}^{33}}{{.11}^{33}}{{.3}^{55}}{{.11}^{55}}{{.5}^{22}}{{.11}^{22}}}}{{ – {{1.2}^{33}}{{.3}^{33}}{{.3}^{22}}{{.5}^{22}}{{.11}^{111}}}}\\ = \frac{{{2^{33}}{{.11}^{33 + 55 + 22}}{{.3}^{55}}{{.5}^{22}}}}{{{2^{33}}{{.3}^{33 + 22}}{{.5}^{22}}{{.11}^{111}}}}\\ = \frac{{{2^{33}}{{.11}^{110}}{{.3}^{55}}{{.5}^{22}}}}{{{2^{33}}{{.3}^{55}}{{.5}^{22}}{{.11}^{111}}}}\\ = \frac{1}{{11}}\end{array}\)
Chọn D