Đồ thị sau là đồ thị của hàm số nào trong bốn phương án A, B, C, D
A. \(y = {x^3} – 3{x^2} + 2\).
B. \(y = {x^3} – 3x + 1\).
C. \(y = {x^3} – 3{x^2} + 1\).
D. \(y = – {x^3} – 3{x^2} + 1\).
Hướng dẫn
Chọn đáp án là C
Phương pháp giải:
– Dựa vào chiều của nét cuối cùng của đồ thị để xác định dấu của hệ số \(a\).
– Dựa vào giao điểm của đồ thị với trục tung để xác định dấu của hệ số \(d\).
– Dựa vào số cực trị của hàm số để xác định dấu của các hệ số \(b,\,\,c\).
Lời giải chi tiết:
Dễ nhận thấy đây là đồ thị của hàm đa thức bậc ba có dạng \(y = a{x^3} + b{x^2} + cx + d\,\,\left( {a \ne 0} \right)\).
Đồ thị hàm số có nét cuối cùng đi lên nên \(a > 0 \Rightarrow \) loại D.
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 \( \Rightarrow d = 1\) nên loại A.
Ta có \(y’ = 3a{x^2} + 2bx + c\).
Hàm số có tổng 2 cực trị dương nên \( – \frac{{2b}}{{3a}} > 0 \Rightarrow b < 0 \Rightarrow \) loại B.
Chọn C.