Tháng Hai 4, 2026

Cho \(x;y\) là hai đại lượng tỉ lệ thuận. Biết rằng với hai giá trị \({x_1};{x_2}\) của \(x\) có tổng bằng \(1\) thì hai giá trị tương ứng \({y_1};{y_2}\) có tổng bằng \(5\). Biểu diễn \(y\) theo \(x\) ta được:

Cho \(x;y\) là hai đại lượng tỉ lệ thuận. Biết rằng với hai giá trị \({x_1};{x_2}\) của \(x\) có tổng bằng \(1\) thì hai giá trị tương ứng \({y_1};{y_2}\) có tổng bằng \(5\). Biểu diễn \(y\) theo \(x\) ta được:

A. \(y = \frac{1}{5}x\)

B. \(y = 5x\)

C. \(y = 3x\)

D. \(y = 2x\)

Hướng dẫn

Chọn đáp án là: B

Phương pháp giải:

Áp dụng tính chất tỉ lệ thuận và tính chất dãy tỉ số bằng nhau.

Vì \(x;y\) là hai đại lượng tỉ lệ thuận nên theo tính chất của đại lượng tỉ lệ thuận ta có \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_1} + {y_2}}}{{{x_1} + {x_2}}} = \frac{5}{1} = 5\) (vì \({y_1} + {y_2} = 5;{x_1} + {x_2} = 1\))

Vậy \(y\) và \(x\) tỉ lệ thuận với nhau theo hệ số tỉ lệ là \(5\).

Suy ra \(y = 5x.\)

Chọn B.