Tháng Tư 27, 2024

Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số \(y = \sqrt x \cos \frac{x}{2},\,\,y = 0,\,\,x = \frac{\pi }{2},\,\,x = \pi \). Tính thể tích \(V\) của khối tròn xoay sinh ra khi cho hình phẳng \(\left( H \right)\) quay xung quanh trục Ox.

Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số \(y = \sqrt x \cos \frac{x}{2},\,\,y = 0,\,\,x = \frac{\pi }{2},\,\,x = \pi \). Tính thể tích \(V\) của khối tròn xoay sinh ra khi cho hình phẳng \(\left( H \right)\) quay xung quanh trục Ox.

A. \(V = \frac{\pi }{6}\left( {3{\pi ^2} + 4\pi – 8} \right)\)

B. \(V = \frac{\pi }{{16}}\left( {3{\pi ^2} – 4\pi – 8} \right)\)

C. \(V = \frac{\pi }{8}\left( {3{\pi ^2} + 4\pi – 8} \right)\)

D. \(V = \frac{1}{{16}}\left( {3{\pi ^2} – 4\pi – 8} \right)\)

Hướng dẫn

Chọn đáp án là B

Phương pháp giải:

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Gọi \(\left( H \right)\) là hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục Ox và hai đường thẳng \(x = a\) và \(x = b\). Thể tích \(V\) của khối tròn xoay tạo thanh khi quay \(\left( H \right)\) quanh trục Ox được tính theo công thức \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} .\)

Lời giải chi tiết:

Xét phương trình hoành độ giao điểm: \(y = \sqrt x \cos \frac{x}{2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\\frac{x}{2} = \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pi + k2\pi \end{array} \right.\)

Xét \(x \in \left[ {\frac{\pi }{2};\pi } \right] \Rightarrow x = \pi \)\( \Rightarrow V = \pi \int\limits_{\frac{\pi }{2}}^\pi {x{{\cos }^2}\frac{x}{2}dx} \approx 1,775\).

Chọn B.