Tháng Hai 3, 2026

Tìm \(x\) , biết a. \(\frac{2}{3} + \frac{5}{3}x = \frac{5}{7}\) b. \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\frac{{81}}{{121}}} } \right) = \frac{{13}}{{10}}\) c. \(\frac{{x – 5}}{4} = \frac{{1 – 2x}}{7}\) d. \(\left| {\frac{3}{5}\sqrt x – \frac{1}{{20}}} \right| – \frac{3}{4} = \frac{1}{5}\)

Tìm \(x\) , biết

a. \(\frac{2}{3} + \frac{5}{3}x = \frac{5}{7}\)

b. \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\frac{{81}}{{121}}} } \right) = \frac{{13}}{{10}}\)

c. \(\frac{{x – 5}}{4} = \frac{{1 – 2x}}{7}\)

d. \(\left| {\frac{3}{5}\sqrt x – \frac{1}{{20}}} \right| – \frac{3}{4} = \frac{1}{5}\)

A. a) \(x = \frac{1}{{5}}\)

b) \(x = \frac{{13 }}{5}\)

c) \(x = \frac{1}{{12}}\)

d) \(x = \frac{{29}}{5}\)

B. a) \(x = \frac{1}{{53}}\)

b) \(x = \frac{{5 }}{13}\)

c) \(x = \frac{1}{{21}}\)

d) \(x = \frac{{2}}{59}\)

C. a) \(x = \frac{1}{{35}}\)

b) \(x = \frac{{13 }}{5}\)

c) \(x = \frac{1}{{121}}\)

d) \(x = \frac{{25}}{9}\)

D. a) \(x = \frac{1}{{3}}\)

b) \(x = \frac{{35 }}{5}\)

c) \(x = \frac{12}{{121}}\)

d) \(x = \frac{{5}}{9}\)

Hướng dẫn

Chọn đáp án là: C

Phương pháp giải:

Ta áp dụng thứ tự thực hiện phép tính để tìm \(x\). Đối với bài toán tìm \(x\) có chứa dấu giá trị tuyệt đối ta áp dụng quy tắc phá dấu giá trị tuyệt đối: \(\left| x \right| = \left\{ \begin{array}{l}

x\,\,\,\,\,\,khi\,\,x \ge 0\\

– x\,\,\,\,khi\,\,\,x < 0

\end{array} \right.\( sau đó tìm \(x\).

a. \(\frac{2}{3} + \frac{5}{3}x = \frac{5}{7}\)

\(\begin{array}{l}\frac{5}{3}x = \frac{5}{7} – \frac{2}{3}\\\frac{5}{3}x = \frac{1}{{21}}\\x = \frac{1}{{21}}:\frac{5}{3}\\x = \frac{1}{{35}}\end{array}\)

Vậy \(x = \frac{1}{{35}}\)

b. \(\frac{{x – 5}}{4} = \frac{{1 – 2x}}{7}\)

\(\begin{array}{l}7.\left( {x – 5} \right) = 4.\left( {1 – 2x} \right)\\7x – 35 = 4 – 8x\\7x + 8x = 35 + 4\\15x = 39\\x = \frac{{39}}{{15}} = \frac{{13}}{5}\end{array}\)

Vậy \(x = \frac{{13 }}{5}\)

c. \(\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\frac{{81}}{{121}}} } \right) = \frac{{13}}{{10}}\)

\(\begin{array}{l}\sqrt {1,69} .\left( {2\sqrt x + \sqrt {\frac{{81}}{{121}}} } \right) = \frac{{13}}{{10}}\\1,3.\left( {2\sqrt x + \frac{9}{{11}}} \right) = 1,3\\2\sqrt x + \frac{9}{{11}} = 1,3:1,3\\2\sqrt x + \frac{9}{{11}} = 1\\2\sqrt x = 1 – \frac{9}{{11}}\\2\sqrt x = \frac{2}{{11}}\\\sqrt x = \frac{2}{{11}}:2\\\sqrt x = \frac{1}{{11}}\\x = \frac{1}{{121}}\end{array}\)

Vậy \(x = \frac{1}{{121}}\)

d. \(\left| {\frac{3}{5}\sqrt x – \frac{1}{{20}}} \right| – \frac{3}{4} = \frac{1}{5}\)

\(\begin{array}{l}\left| {\frac{3}{5}\sqrt x – \frac{1}{{20}}} \right| = \frac{1}{5} + \frac{3}{4}\\\left| {\frac{3}{5}\sqrt x – \frac{1}{{20}}} \right| = \frac{{19}}{{20}}\end{array}\)

Trường hợp 1: \(\frac{3}{5}\sqrt x – \frac{1}{{20}} = \frac{{19}}{{20}}\)

\(\begin{array}{l}\frac{3}{5}\sqrt x = \frac{{19}}{{20}} + \frac{1}{{20}} = 1\\\sqrt x = 1:\frac{3}{5} = \frac{5}{3}\\x = \frac{{25}}{9}\end{array}\)

Trường hợp 2: \(\frac{3}{5}\sqrt x – \frac{1}{{20}} = \frac{{ – 19}}{{20}}\)

\(\begin{array}{l}\frac{3}{5}\sqrt x = \frac{{ – 19}}{{20}} + \frac{1}{{20}} = \frac{{ – 18}}{{20}} = – \frac{9}{{10}}\\\sqrt x = \frac{{ – 9}}{{10}}:\frac{3}{5}\end{array}\)

\(\sqrt x = – \frac{3}{2} < 0\) (vô lý)

Vậy \(x = \frac{{25}}{9}\)

Chọn C