chứng minh A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3) chia hết cho 5040 với mọi số tự nhiên
Hướng dẫn
Ta có
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+ Tồn tại một bội của 5 ⇒ A chia hết cho 5
+ Tồn tại một bội của 7 ⇒ A chia hết cho 7
+ Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+ Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.