Tháng Hai 3, 2026

Cho \(\int\limits_0^1 {f\left( x \right)dx} = – 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = – 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:

Cho \(\int\limits_0^1 {f\left( x \right)dx} = – 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = – 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:

A. \( – 10\)

B. \(12\)

C. \( – 17\)

D. \(1\)

Hướng dẫn

Chọn đáp án là C

Phương pháp giải:

Sử dụng các tính chất của tích phân: \(\int\limits_a^b {\left[ {mf\left( x \right) + ng\left( x \right)} \right]dx} = m\int\limits_a^b {f\left( x \right)dx} + n\int\limits_a^b {g\left( x \right)dx} \).

Lời giải chi tiết:

\(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} = \int\limits_0^1 {f\left( x \right)dx} + 3\int\limits_0^1 {g\left( x \right)dx} \)\( = – 2 + 3.\left( { – 5} \right) = – 17\).

Chọn C.