Tháng Hai 4, 2026

Cho hàm số \(y = f\left( x \right)\) có đồ thị như đường cong hình dưới. Phương trình \(f\left( x \right) = 2\) có bao nhiêu nghiệm?

Cho hàm số \(y = f\left( x \right)\) có đồ thị như đường cong hình dưới.

Phương trình \(f\left( x \right) = 2\) có bao nhiêu nghiệm?

A. \(2\)

B. \(4\)

C. \(1\)

D. \(3\)

Hướng dẫn

Chọn đáp án là B

Phương pháp giải:

Số nghiệm của phương trình \(f\left( x \right) = 2\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2.\)

Dựa vào đồ thị hà số để biện luận số nghiệm của phương trình.

Lời giải chi tiết:

Số nghiệm của phương trình \(f\left( x \right) = 2\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 2.\)

Ta có đồ thị hàm số:

Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 4 điểm phân biệt.

\( \Rightarrow f\left( x \right) = 2\) có 4 nghiệm phân biệt.

Chọn B.