Cho hai tia Ox và Oy vuông góc với nhau. Trong góc xOy vẽ hai tia Om và On sao cho \(\widehat{mOx}=\widehat{nOy}={{30}^{0}}\). Vẽ tia Oz sao cho tia Oy là tia phân giác của góc mOz. Chứng tỏ rằng:
a) Tia Om là tia phân giác của góc nOx.
b) On vuông góc với Oz.
Phương pháp giải:
a) Áp dụng tính chất tia nằm giữa hai tia còn lại. Từ đó áp dụng công thức cộng góc, tính số đo góc mOn. Từ đó chứng minh Om là tia phân giác của góc xOn.
b) Áp dụng tính chất tia nằm giữa hai tia còn lại. Từ đó áp dụng công thức cộng góc, tính số đo góc nOz. Từ đó chứng minh On vuông góc với Oz.
a) Vì tia Om nằm giữa hai tia Ox và Oy
\(\begin{align} & \Rightarrow \widehat{xOm}+\widehat{mOy}=\widehat{xOy} \\ & \Rightarrow {{30}^{0}}+\widehat{mOy}={{90}^{0}} \\ & \Rightarrow \widehat{mOy}={{90}^{0}}-{{30}^{0}}={{60}^{0}}\,\,\,\,\, \\ \end{align}\)
Trên nửa mặt phẳng bờ chứa tia Oy có : \(\widehat{nOy}<\widehat{mOy}\,\,\left( {{30}^{0}}<{{60}^{0}} \right)\)
Suy ra tia On nằm giữa hai tia Om và Oy
\(\begin{align} & \Rightarrow \widehat{nOy}+\widehat{mOn}=\widehat{mOy} \\ & \Rightarrow {{30}^{0}}+\widehat{mOn}={{60}^{0}} \\ & \Rightarrow \widehat{mOn}={{60}^{0}}-{{30}^{0}}={{30}^{0}}\,\,\,\,\, \\ \end{align}\)
\(\Rightarrow \widehat{xOm}=\widehat{mOn}={{30}^{0}}\) và tia Om nằm giữa hai tia Ox và On
Vậy Om là tia phân giác của góc xOn.
b) Vì Oy là tia phân giác của góc mOz nên \(\widehat{mOz}=2.\widehat{mOy}={{2.60}^{0}}={{120}^{0}}\)
Trên nửa mặt phẳng bờ chứa tia Om có: \(\widehat{mOn}<\widehat{mOz}\,\,\left( {{30}^{0}}<{{120}^{0}} \right)\)
Suy ra tia On nằm giữa hai tia Om và Oz
\(\begin{align} & \Rightarrow \widehat{mOn}+\widehat{nOz}=\widehat{mOz} \\ & \Rightarrow {{30}^{0}}+\widehat{nOz}={{120}^{0}} \\ & \Rightarrow \widehat{nOz}={{120}^{0}}-{{30}^{0}}={{90}^{0}}\,\,\,\,\, \\ \end{align}\)
Vậy On vuông góc với Oz.