Tháng Hai 3, 2026

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\ln 4\) thỏa \(F\left( 0 \right) = 4\). Khi đó \(F\left( 1 \right)\) bằng

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\ln 4\) thỏa \(F\left( 0 \right) = 4\). Khi đó \(F\left( 1 \right)\) bằng

A. 5

B. \(2{\left( {\ln 2} \right)^2}\)

C. 7

D. 6

Hướng dẫn

Chọn đáp án là D

Phương pháp giải:

Áp dụng công thức tính nguyên hàm \(\int {{a^x}dx = \frac{{{a^x}}}{{\ln a}} + C} \).

Lời giải chi tiết:

Ta có

\(\begin{array}{l}f\left( x \right) = {2^x}\ln 4\\ \Rightarrow F\left( x \right) = \int {f\left( x \right) = \ln 4.\int {{2^x}dx} = \ln 4.\frac{{{2^x}}}{{\ln 2}} + C} = {2.2^x} + C\end{array}\)

Mà \(F\left( 0 \right) = 4 \Rightarrow C = 2 \Rightarrow F\left( x \right) = {2.2^x} + 2 \Rightarrow F\left( 1 \right) = 6\)

Chọn D.