Tháng Năm 12, 2024

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 5 \right) = 1\) và \(\int\limits_0^1 {xf\left( {5x} \right){\rm{d}}x} = 1\), khi đó \(\int\limits_0^5 {{x^2}f’\left( x \right){\rm{d}}x} \) bằng

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Biết \(f\left( 5 \right) = 1\) và \(\int\limits_0^1 {xf\left( {5x} \right){\rm{d}}x} = 1\), khi đó \(\int\limits_0^5 {{x^2}f’\left( x \right){\rm{d}}x} \) bằng

A. \(15\).

B. \(23\).

C. \(\frac{{123}}{5}\).

D. \( – 25\).

Hướng dẫn

Chọn đáp án là D

Phương pháp giải:

Sử dụng phương pháp đổi biến số và tích phân từng phần

Lưu ý rằng tích phân không phụ thuộc vào biến

Lời giải chi tiết:

Đặt \(t = 5x \Rightarrow \left\{ \begin{array}{l}dx = \frac{{dt}}{5}\\x = \frac{t}{5}\end{array} \right.\).

Đổi cận: Với \(x = 0 \Rightarrow t = 0\); với \(x = 1 \Rightarrow t = 5\).

Khi đó: \(\int\limits_0^1 {xf\left( {5x} \right){\rm{d}}x} = 1 \Leftrightarrow \int\limits_0^5 {\frac{t}{5}f\left( t \right)\frac{{{\rm{dt}}}}{5}} = 1 \Leftrightarrow \int\limits_0^5 {t.f\left( t \right){\rm{d}}t} = 25\)

Do đó \(\int\limits_0^5 {x.f\left( x \right){\rm{d}}x} = 25\,\) (vì tích phân không phụ thuộc vào biến)

Đặt: \(\left\{ \begin{array}{l}u = f\left( x \right)\\{\rm{d}}v = x{\rm{d}}x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\rm{d}}u = f’\left( x \right){\rm{d}}x\\v = \frac{{{x^2}}}{2}\end{array} \right.\).

Ta có: \(\int\limits_0^5 {x.f\left( x \right){\rm{d}}x} = 25\, \Leftrightarrow \frac{{{x^2}}}{2}.f\left( x \right)\left| \begin{array}{l}5\\0\end{array} \right. – \frac{1}{2}\int\limits_0^5 {{x^2}.f’\left( x \right){\rm{d}}x} = 25\)

\( \Leftrightarrow \frac{{25}}{2} – \frac{1}{2}\int\limits_0^5 {{x^2}.f’\left( x \right){\rm{d}}x} = 25 \Leftrightarrow \int\limits_0^5 {{x^2}.f’\left( x \right){\rm{d}}x} = – 25\).

Chọn D.